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Abstract
Main conclusion  This study reported seven new plastomes from Impatiens and observed three highly variable regions 
for phylogeny and DNA barcoding, which resolved the relationships among sections of subgenus Impatiens.

Abstract  Impatiens L. (Balsaminaceae, Ericales) is one of the largest and most diverse genera of angiosperms, widely known 
for its taxonomic difficulty. In this study, we reevaluated the infrageneric relationships within the genus Impatiens, using 
complete plastome sequence data. Seven complete plastomes of Impatiens (representing 6 species) were newly sequenced 
and characterized along with 20 previously published plastomes of other Impatiens species, plus 2 plastomes of outgroups 
(Hydrocera triflora, Balsaminaceae; Marcgravia coriacea, Marcgraviaceae). The total size of these 29 plastomes ranged 
from 151,538 bp to 152,917 bp, except 2 samples of Impatiens morsei, which exhibited a shorter length and lost some genes 
encoding NADH dehydrogenase subunits. Moreover, the number of simple sequence repeats (SSRs) ranged from 51 to 113, 
and the number of long repeats from 17 to 26. In addition, three highly variable regions were identified (trnG-GCC​ (The 
previous one), ndhF–rpl32–trnL-UGA–ccsA, and ycf1). Our phylogenomic analysis based on 80 plastome-derived protein-
coding genes strongly supported the monophyly of Impatiens and its two subgenera (Clavicarpa and Impatiens), and fully 
resolved relationships among the six (out of seven) sampled sections of subgenus Impatiens. Overall, the plastome DNA 
markers and phylogenetic results reported in this study will facilitate future identification, taxonomic and DNA barcoding 
studies in Impatiens as well as evolutionary studies in Balsaminaceae.
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Introduction

The Balsaminaceae A. Rich. are a family of dicotyledon-
ous plants within the order of Ericales Bercht. and J. Presl, 
comprising two genera: the monotypic Hydrocera Blume 
from Southeast Asia (Hydrocera triflora (Linn.) Wight et 
Arn.) and Impatiens Riv. ex L. (Byng et al. 2016). The 
latter is one of the most diverse genera of angiosperms 
with more than 1000 species (Byng et al. 2016; Yu et al. 
2016), which are mostly distributed in highland and moun-
tainous regions of the Old World tropics and subtropics 
(Grey-Wilson 1980; Janssens et al. 2012). However, some 
species of Impatiens also occur in the temperate regions 
of Europe, North America and China (Janssens et al. 2006; 
Yu et al. 2016). Recently, numerous new species of the 
genus have been identified in China, especially in the karst 
areas, which are considered as biodiversity hotspots (Li 
et al. 2018; Wang et al. 2020, 2022a, b; Luo et al. 2021; 
Song et al. 2021). Several species of Impatiens, such as I. 
balsamina L., have their stems used in traditional Chinese 
medicine (TCM) to deal with fingernail inflammation, ber-
iberi and onychomycosis, and their juices are commonly 
used to dye nails (Jiang et al. 2017; Kim et al. 2017). 
In addition, previous research showed that some metals 
such as cadmium and zinc are accumulated by Impatiens 
species (Li et al. 2018; Luo et al. 2021). Because of the 
unique and novel posture of its flowers like a flying phoe-
nix, it is known as the orchid of dicotyledons and owns 
high ornamental value (Yin et al. 2018; Fu et al. 2022).

Impatiens was once considered as one of the most 
difficult group in angiosperm taxonomy (Hooker 1908). 
Morphologically, Impatiens is well known as difficult to 
classify due to its fragile flowers, semi-succulent stems 
and mainly fleshy leaves, which makes the separation and 
reconstruction of different parts laborious, and the pro-
duction of well-dried herbarium specimens challengeable 
(Yu et al. 2016; Rahelivololona et al. 2018). Micromor-
phological characteristics, such as features of pollen and 
seeds, were included in some morphological studies, but 
rarely combined with phylogeny (Janssens et al. 2012; 
Cai et al. 2013; Yu et al. 2016). The infrageneric rela-
tionships within Impatiens are not well resolved, espe-
cially the division of subgenera and sections. Fujihashi 
et al. (2002) published the first molecular phylogeny of 
Impatiens based on combined plastid sequences of the 
rbcL gene and the trnL–F spacer region. Subsequently, 
Yuan et al. (2004) used internal transcribed spacer (ITS) 
sequences of nuclear ribosomal (nr) DNA to reconstruct 
the phylogeny of 111 species of Impatiens and divided 
16 clades for the main lineage of Impatiens, yet the rela-
tionship among most of the clades could not be resolved 
with confident support, probably due to an insufficient 

number of informative sites (Fujihashi et al. 2002; Yuan 
et al. 2004; Luo et al. 2021). Furthermore, Janssens et al. 
(2006), using the plastid atpB–rbcL spacer sequence, pro-
duced a fine tuning of phylogenetic relationships which 
defined 15 clades among Impatiens (Janssens et al. 2006). 
More recently, Yu et al. (2016) presented a comprehensive 
phylogenetic analysis of Impatiens based on morphologi-
cal characters combined with nuclear (ITS) and plastid 
(atpB–rbcL and trnL–F) sequence data; according to their 
results, Impatiens can be subdivided into two major clades, 
corresponding to subgenus Clavicarpa S.X. Yu and sub-
genus Impatiens Warb., with the latter comprising seven 
sections, among which some relationships are not resolved 
(Yu et al. 2016).

However, all the above studies were mainly based on mor-
phology and/or limited molecular data. With the develop-
ment of next-generation sequencing technologies, the acqui-
sition of complete plastomes is nowadays possible. Recently, 
numerous studies have used whole-plastome sequence data 
to solve the intrageneric phylogenetic relationships (Amenu 
et al. 2022; Guo et al. 2022; Song et al. 2022; Yang et al. 
2022). Along this line, Luo et al. (2021) based on plastome 
resolved the phylogeny of Impatiens under the framework 
of Ericales, but this research only included 11 Impatiens 
species and the resolution of relationship within the Impa-
tiens subgenus and sections with limited support (Luo et al. 
2021).

Here, we newly sequenced and assembled seven plasto-
mes of Impatiens, representing 6 species, and downloaded 
previously published plastomes of 20 extra species of the 
genus, together covering both subgenera and 6 of the 7 sec-
tions (sensu (Yu et al. 2016)), plus 2 outgroups. Based on 
these 29 plastomes, we aimed to (1) compare and analyze the 
structural features of Impatiens plastomes; and (2) elucidate 
major relationships among subgenera and sections within 
the genus.

Materials and methods

Taxon sampling, DNA isolation, plastome 
sequencing and de novo assembly

Previously published plastomes of 20 species of Impatiens 
were downloaded from the National Center for Biotech-
nology Information (NCBI; http://​www.​ncbi.​nlm.​nih.​gov) 
(Table 1). In addition, we newly sequenced plastomes of 
seven samples, representing six Impatiens species (see 
Table 1 for GenBank accession numbers, including two 
accessions (‘1’ vs. ‘2’) of I. morsei). All these new sam-
ples were collected from China, with voucher specimens 
deposited in the Herbarium of Zhejiang University (HZU), 
China (Table S1). Based on recent studies (Li et al. 2018; 
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Luo et al. 2021), plastomes of Hydrocera triflora (Linn.) 
Wight et Arn. (Balsaminaceae) and Marcgravia coriacea 
Vahl (Marcgraviaceae) were selected as outgroups, and 
also downloaded from NCBI. Balsaminaceae and Marc-
graviaceae, together with Tetrameristaceae, are generally 
referred to as ‘balsaminoid clade’ within Ericales (Byng 
et al. 2016).

Total genomic DNA was extracted from approximately 
10–20 mg silica-dried leaf material of each of the seven 
samples (six species), using Plant DNAzol Reagent (Life-
Feng, Hangzhou, China) according to the manufacturer’s 
protocol. The qualities and quantities of extracted DNA 
were determined using agarose gel electrophoresis and 
ultraviolet-microspectrophotometry. Approximately, 
1 μg of extracted DNA with a concentration higher than 
12.5 ng/μl was sent to the Beijing Genomics Institute 
(BGI, Wuhan, China) for whole-genome sequencing. 
Before sequencing, total DNA was sheared into fragments 
shorter than 800 bp. The qualities of obtained DNA frag-
ments were evaluated using Agilent Bioanalyzer 2100 
(Agilent Technologies) and the pooled library was run in 
a single lane on an Illumina HiSeq X10 platform to obtain 
raw reads with about 150 bp in length.

The high-quality reads were used for subsequent plas-
tome assembly and annotation. According to the GETOR-
GANELLE pipeline (Jin et al. 2020), we de novo assem-
bled the plastome using Impatiens fanjingshanica Y.L. 
Chen (GenBank accession number: MW411294.1) as a 
seed, applying a k-mer gradient (− k 21, 45, 65, 85, 105) 
for automatic calling SPAdes v.3.13.1, Bowtie2 v.2.4.1 and 
BLAST v.2.12.0 (Bankevich et al. 2012), which first fil-
tered low-quality reads and adapters before conducting the 
de novo assembly. Then, we checked the assembly results 
using BANDAGE v.0.8.1 to obtain a complete plastome 
(Wick et al. 2015).

Genome annotation

In order to generate the draft of plastome annotation, we 
used the ‘Map to Reference’ function with the parameter 
‘High Sensitivity’ in GENEIOUS Prime v.2020.0.5 (Kearse 
et al. 2012), and the genome of I. fanjingshanica was used 
as the reference. We used the MAFFT plugin v1.4.0 (Katoh 
and Standley 2013) in GENEIOUS with default parameters 
to align the sequences with the reference, and then annotated 
them. The presence of start and stop codons of each protein-
coding gene (PCG) was checked and adjusted manually, 
those genes with any premature termination codon, which 
may interrupt the translation of the original reading frame, 
were annotated as pseudogenes and excluded from the phy-
logenetic analyses (see below). Circular plastome maps were 
visualized using OGDRAW v.1.3.1 (Greiner et al. 2019).

Analysis of long sequence repeats

We used the online tool REPuter (Kurtz et al. 2001) to iden-
tify 4 kinds of sequence repeats (i.e., forward, reverse, com-
plement, and palindromic) in the 27 Impatiens plastomes. 
The Hamming distance (i.e., the number of bit positions 
in which the two bits are different) was set to three, and 
the minimal repeat size was limited to 30, while the other 
settings were retained as default. In addition, we searched 
27 Impatiens plastomes for simple sequence repeats (SSRs; 
or microsatellites), using the online tool MISA-web (Beier 
et al. 2017). The minimum numbers for mono-, di-, tri-, 
tetra-, penta-, and hexanucleotide repeats were set as 10, 5, 
4, 3, 3, and 3, respectively.

Comparative analysis of plastome sequence 
divergence

We checked the gene order of all 29 plastomes (including 
outgroups), using the MAUVE plugin v.1.1.3 (Darling et al. 
2004) in GENEIOUS. To study the contraction or expan-
sion of inverted repeated (IR) regions in Impatiens, we used 
IRscope (Amiryousefi et al. 2018) and its perl script (https://​
www.​github.​com/​xul96​2464/​perl-​IRsco​pe) for visualization 
and manual checking of IR boundaries.

Levels of nucleotide diversity (Pi) were calculated using 
DnaSP v.6.12.03 (Rozas et al. 2017) with a step size of 
200 bp and a window length of 800 bp, in order to explore 
highly variable regions across the 27 Impatiens plastomes. 
For three highly variable regions identified (see Results), 
we also used IQ-TREE v.2.0.3 (Minh et al. 2020) to assess 
their marker discriminatory power inter-se and in relation 
to the whole-plastome data under a best-fitting (automati-
cally selected) model and using 1000 bootstrap replicates. 
Finally, for examining codon usage bias, i.e., the prefer-
ence for certain synonymous codon, we calculated values 
of relative synonymous codon usage (RSCU) for a total of 
80 PCGs in each of the 27 Impatiens plastomes, using the 
program codonW v.1.4.2 (http://​www.​codonw.​sourc​eforge.​
net/​culong.​html#​CodonW).

Phylogenetic analyses

For phylogenetic analyses, we used a total of 80 PCGs 
that were extracted from the 7 newly sequenced plastomes 
and all other available plastomes of Impatiens from NCBI 
(Table S1), plus those of the outgroups H. triflora and M. 
coriacea. For the alignment, we used the MAFFT plugin in 
GENEIOUS with default settings, and manually removed 
those regions with more than 50% missing data. Phyloge-
netic relationships were inferred using two methods. First, 
we performed a Maximum Likelihood (ML) analysis in IQ-
TREE under the optimal substitution models, which was 
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automatically selected by the parameter -m MPF + MERGE. 
For Adequate sampling, 1000 bootstrap replicates were gen-
erated. The R package PHYTOOLS (Revell 2011) was used 
to generate 240 possible gene-by-codon position partition 
files (80 genes × three codon positions) and the partition files 
was applied using the parameter -p in IQ-TREE to exclude 
the influence of different codon variation rates on phylo-
genetic relationship inference. In addition, we performed a 
Bayesian Inference (BI) analysis in MRBAYES v.3.2.7 on 
the CIPRES Science Gateway (Miller et al. 2010), using 
2 independent Markov Chain Monte Carlo (MCMC) runs, 
each consisting of 4 chains of 1,000,000 generations and 
sampled every 1000 generations. TRACER v.1.7.2 (Rambaut 
et al. 2018) was used to assess convergence of the MCMC 
parameters, ensuring their sufficient effective sample size 
(ESS) ≥ 200. The final tree with bootstrap support (BS) 
and posterior probability (PP) values was visualized using 
FIGTREE v.1.4.4 (Rambaut et al. 2018).

Results

Features of the newly sequenced Impatiens 
plastomes

For the seven newly sequenced plastomes, representing six 
Impatiens species, the number of paired-end clean reads 
per sample ranged from 9,205,472 (I. huangyanensis) to 
36,897,312 (I. morsei 2), with a coverage from 63.8 × (I. 
huangyanensis) to 190.9 × (I. morsei 1) (Table S1). The 
length of the plastomes varied from 146,234 to 152,917 bp. 
All seven plastomes possessed the typical angiosperm quad-
ripartite structure (Fig. 1), with very similar lengths of the 
two IR regions (IRa/IRb; 24,946–26,388 bp), the large sin-
gle-copy (LSC) region (81,459–82,982 bp), and the small 
single-copy (SSC) region (14,044–17,793  bp). Across 
these seven plastomes, the total GC content ranged from 
36.7% (I. chlorosepala 2) to 37.0% (I. morsei 2), with the IR 
regions showing the highest GC content (42.9–43.1%), fol-
lowed by the LSC region (34.3–35.7%) and the SSC region 
(29.1–29.9%) (Table 1). Almost all newly assembled plas-
tomes contained 114 genes, including 80 PCGs, 30 tRNA 
genes, and 4 rRNA genes; the only exception was I. mor-
sei, of which the 2 accessions analyzed were lacking 6 and 
3 genes in the SSC region, respectively (Fig. 1; Table 1; 
Table 2).

Analysis of long sequence repeats

Across the seven newly assembled Impatiens plastomes, 
the total number of long repeat sequences identified ranged 
from 17 to 26 (Table S2). Among those, forward (F) repeats 
were most abundant (7–17), closely followed by palindromic 

(P) repeats (6–13), while reverse (R) and complement (C) 
repeats were rare (0–2 and 0–1, respectively; Fig. 2A). Over-
all, the length of repeats varied from 30 to 216 bp, yet most 
of them were 30–39 bp in length, while only a small part (4 
out of 550) fell into the 50–59 bp category (Fig. 2B).

Among the 27 plastomes of Impatiens, the total number 
of SSRs ranged from 51 to 113, with mononucleotide repeats 
being the most abundant (Fig. 3A; Table S3). Notably, in all 
these 27 plastomes, the great majority of SSRs resided in the 
LSC region (Fig. 3B).

We used the 80 PCGs in all of 27 Impatiens plasto-
mes, the number of leucine (Leu) was the most abundant, 
accounting for 10.29% (I. morsei 1) to 10.82% (I. cyanantha) 
of total selected amino acids (Table S4). Considering esti-
mates of relative synonymous codon usage (RSCU; Fig. 4), 
we found that 30 codons had RSCU values > 1.00 (indicates 
that the actual frequency of the codon is higher than the 
theoretical frequency), and most of them (29) ended with A 
or U, excepting ‘UUG’, which codes for leucine.

Comparative plastome analysis

The visualization analysis of the alignment using MAUVE 
showed that the genomic order and orientation were highly 
conserved without observed rearrangements, except for 
slight variations in size and gene positioning (Fig. S1). 
Across 27 plastomes (i.e., 27 Impatiens ssp.), levels nucleo-
tide diversity (Pi) ranged from 0.0005 to 0.0976, with an 
average of 0.0228 (Fig. 5; Table S5). Based on a cutoff Pi 
value ≥ 0.06, we identified three highly variable regions, 
including trnG-GCC​, ndhF–rpl32–trnL-UGA–ccsA and 
ycf1 (Fig. 5; Table S5). The two identified variable regions 
located in the SSC region (i.e., ndhF–rpl32–trnL-UGA–ccsA 
and ycf1) had higher Pi values (and, respectively) than trnG-
GCC​, while the intergenic spacer between ndhF and rpl32 
possessed the highest Pi value (0.0976) (Fig. 5; Table S5). 
In addition, it was obvious that the Pi value of the IR regions 
was lower than that of the SSC and LSC regions (Fig. 5). 
Based on the discriminatory power analysis in IQ-TREE (Fig 
S2–S5), ndhF–rpl32-trnL-UGA–ccsA and ycf1 exhibited the 
highest discriminatory power among the three highly vari-
able regions and in relation to the whole-plastome data.

For the analysis of IR expansion and contraction 
(Fig. S2), we used all 27 plastomes of Impatiens with 
Hydrocera trif lora (Balsaminaceae) and Marcgravia 
coriacea (Marcgraviaceae) as outgroups. All of the Impa-
tiens plastomes had similar IR boundary features, with 
particular genes mainly found at the junctions (i.e., rpl22, 
rps19, rpl2, rps3, ycf1, ndhF, trnH, and psbA). However, 
in all analyzed species of Impatiens, the LSC–IRb junction 
was located in the rps19 gene (with 0–200 bp extending 
into the IRb region), while in Marcgravia coriacea this 
gene was fully embedded in the IRb region. Across all 
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plastomes, the SSC-IRa junction was always located in the 
gene ycf1 (with 4221 to 4585 bp in SSC region and 1039 
to 1688 bp in IRa region) except in I. davidii, in which the 
whole gene ycf1 was located in SSC, with 254 bp to the 
SSC-IRa junction.

Phylogenetic analyses

Here, phylogenetic analyses based on complete plastome 
sequences, 80 PCG datasets were performed, the results 
were similar despite the position of Impatiens arguta, but 

Fig. 1   Gene maps of seven newly assembled Impatiens plastomes 
(accession numbers: ON186542, OP022555, OP022556, OP022559, 
OP022554, OP022557, OP022558; see also Table  1). The genes 
located inside the circles are transcribed in a clockwise direction, 
while those outside the circle are transcribed counterclockwise. 

Genes are colored based on their functional groups as identified in the 
legend. The inner circle shows the quadripartite structure of the plas-
tid genome. The gray ring marks the GC content, with the inner circle 
marking a 50% threshold

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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in the analysis based on complete plastome, this node was 
weakly supported (BS = 38) while in the analysis based on 
the 80 PCG dataset this node had stronger support (BS = 72, 
PP = 0.99) (Fig. 6; Fig. S3). The identical topologies of the 
ML and BI trees (Fig. 6) had strong internal support: only 
three nodes had BS values < 90, while all the remaining 
nodes had BS values of 100, and only two nodes had PP val-
ues < 1.0. The phylogenetic trees consistently revealed that 
Impatiens split into two major clades (subgenera Clavicarpa 
and Impatiens) with maximum support (BS = 100, PP = 1.0), 
and thus in line with previous studies (Yu et al. 2016; Luo 
et al. 2021). Based on the phylogenetic framework by Yu 
et al. (2016), the species selected here included six (out of 
seven) sections in subgen. Impatiens, these sections were all 
monophyletic and largely well resolved, despite conflicting 
positions between sect. Impatiens and sect. Fasciculatae (Yu 
et al. 2016).

Moreover, within the genus, we recovered the major 
split between subgenera Clavicarpa and Impatiens, and all 
six (out of seven) sections sampled for the latter subgenus 
(except sect. Tuberosae) were highly supported as monophy-
letic and well resolved. Considering sectional relationships, 

sects. Semeiocardium + Racemosae proved sister to a grade 
comprising sects. Impatiens, Fasciculatae and the sister 
group Scorpioidae + Uniflorae.

Discussion

Plastome features

Here, we compared 27 complete plastomes of Impatiens 
(25 species), including 7 newly assembled ones, along 
with those of Hydrocera triflora and Marcgravia coria-
cea, serving as outgroups. The total size of most plas-
tomes ranged from 151,538 bp to 152,917 bp, excepting 
those of the two accessions of Impatiens morsei (‘1’ and 
‘2’), which were of much smaller size (146,236 bp and 
148,277 bp, respectively). The outgroup Hydrocera tri-
flora has a plastome of 154,189 bp in length, compared 
with which the plastome length of Impatiens species 
were reduced (Li et al. 2018). Overall, these 29 plastomes 
contained between 108 and 115 genes, including 74–81 
protein-coding genes (PCGs), 25–31 tRNA genes, and 4 

Table 2   Genes in the plastomes of Impatiens species

(× 2) Duplicated genes located within the inverted repeat (IR) regions
a Genes containing a single intron
b Genes containing two introns
c Genes lost in I. morsei 1
d Genes lost in I. morsei 2

Group of genes Name of genes

ATP synthase atpA, atpB, atpE, atpFa, atpH, atpI
NADH dehydrogenase ndhA ac, ndhB acd (× 2), ndhC, ndhDd, ndhE, ndhFcd, ndhGc, ndhHc, ndhI, ndhJ, ndhK
Cytochrome b6/f complex petA, petBa, petDa, petG, petL, petN
Photosystem I psaA, psaB, psaC, psaI, psaJ
Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ
Rubisco rbcL
Subunit of Acetyl-CoA-carboxylase accD
c-type cytochrome synthesis gene ccsA
Envelop membrane protein cemA
Protease clpPb

Translational initiation infA
Maturase matK
Large subunit of ribosome rpl2a (× 2), rpl14, rpl16a, rpl20, rpl22, rpl23 (× 2), rpl32, rpl33, rpl36
DNA-dependent RNA polymerase rpoA, rpoB, rpoC1a, rpoC2
Small subunit of ribosome rps2, rps3, rps4, rps7 (× 2), rps8, rps11, rps12b (× 2), rps14, rps15, rps16a, rps18, rps19
rRNA genes rrn4.5 (× 2), rrn5(× 2), rrn16(× 2), rrn23(× 2)
tRNA genes trnA-UGC (× 2), trnC-GCA​, trnD-GUC​, trnE-UUC​, trnF-GAA​, trnfM-CAU​, trnG-GCC​, 

trnH-GUG​, trnI-CAU (× 2), trnI-GAU (× 2), trnK-UUU​, trnL-CAA (× 2), trnL-UAA​, trnL-
UAG​, trnM-CAU​, trnN-GUU (× 2), trnP-UGG​, trnP-GGG​, trnQ-UUG​, trnR-ACG (× 2), 
trnR-UCU​, trnS-GCU​, trnS-GGA​, trnS-UGA​, trnT-GGU​, trnT-UGU​, trnV-GAC (× 2), 
trnV-UAC​, trnW-CCA​, trnY-GUA​

Unknown function ycf1, ycf2 (× 2), ycf3b, ycf4, ycf15 (× 2)
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rRNA genes. All of them exhibited the typical quadripar-
tite structure of most angiosperm plastomes, including a 
pair of inverted repeats (IRs) as well as a large (LSC) and 
small (SSC) single-copy region (Guo et al. 2022; Song 
et al. 2022; Sun et al. 2022). The contraction and expan-
sion of IR boundaries was previously proposed as the 
major reason for the reduced plastomes of Impatiens rela-
tive to Hydrocera (Luo et al. 2021). However, the extreme 
plastome downsizing in I. morsei is also due to the lack 
of genes encoding NADH dehydrogenase subunits (ndhA, 
ndhB (× 2), ndhF, ndhG, ndhH in I. morsei 1; ndhB (× 2), 
ndhD, ndhF in I. morsei 2), and which usually reside in 
the SSC region (except ndhB). Many previous studies have 
also observed the loss of ndh genes, demonstrating that 
they might be dispensable for some photoautotrophic plant 
species (e.g., orchids, Genlisea and Selaginella; Lin et al. 
2017; Silva et al. 2018; Xu et al. 2018). In our case, the 
two sequenced I. morsei individuals are cultivated ones 
which have different phenotypes, and are probably from 
different wild populations (Fig. 7A and E). Impatiens mor-
sei is such a polymorphic species (Fig. 7), which makes it 

understandable to have such variations of ndh genes loss 
within it. In addition, the GC content was unevenly dis-
tributed across the 29 plastomes, and generally higher in 
the IR regions than in the LSC and SSC regions, possibly 
because of the higher GC content of four rRNAs in the IRs 
(Shen et al. 2017; Zhang et al. 2022a, b).

Long repeat sequences are of great importance for induc-
ing indels and identifying mutational hotspots (Ahmed et al. 
2012; Ren et al. 2022). In this study, based on 27 Impatiens 
plastomes, we demonstrated that forward (F) and palindro-
mic (P) repeats were far more abundant than reverse (R) or 
complement (C) repeats, and the lengths of all four types 
usually ranged from 30 to 39 bp, similar to recent studies 
(Li et al. 2018; Luo et al. 2021).

Simple sequence repeats (SSRs) are widely used as 
molecular markers due to their high variability and repro-
ducibility (Zalapa et al. 2012; Ramzan et al. 2020). In this 
study, 4 to 6 types of SSRs were found across the 27 plas-
tomes of Impatiens. These SSRs mainly found in the LSC 
region, while the fewest SSRs were in the IRs, and mono-
nucleotides were the most dominant among all of the SSRs, 

Fig. 2   Analyses of long repeat sequences in 27 complete plastomes of Impatiens. A Number of four kinds of repeats. F forward, R reverse, C 
complement, P palindromic. B Number of repeats within four different length categories (in bp)
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consistent with other studies (Li et al. 2018; Luo et al. 2021; 
Liu et al. 2022a, b; Yang et al. 2022).

In general, strong codon usage bias is often found in 
highly expressed protein encoding genes and thus usually 
correlates with mRNA and protein levels genome-wide 
(Zhou et al. 2013; Lyu and Liu 2020). The most abundant 
codons of Impatiens were those for leucine, consistent with 
numerous other studies (Somaratne et al. 2020; Ren et al. 
2022; Zhang et al. 2022a, b). In this study, A/U-end codons 
were preferred in Impatiens, as 29 of 30 codons whose 

RSCU value more than 1.00 were ended with A or U, which 
might have contributed to the molecular evolution (Sharp 
and Wen-Hsiung 1986; Zhang et al. 2022a, b).

Identification of highly variable plastome regions

Recently, Luo et al. (2021) demonstrated that trnG-GCC​ 
(The previous one) and ycf1 are two highly variable plas-
tid regions of potential use as DNA barcode markers in 
Impatiens. Here, based on 27 Impatiens plastomes, we 

Fig. 3   Analysis of simple sequence repeats (SSRs) in 27 complete plastomes of Impatiens. A The number of different SSR types. B The overall 
number of SSRs detected in particular plastome regions. LSC large single-copy, SSC small single-copy, IRs inverted repeats
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additionally identified ndhF–rpl32–trnL-UGA–ccsA as a 
third highly variable region, based on a cutoff Pi value ≥ 0.06 
(Fig. 5). However, phylogeny reconstructions based on these 
3 regions showed that ycf1 recovered a similar phylogeny 
with 80 PCGs (Fig. S4, Fig. 6), while ndhF and trnG-GCC 
could not resolve the monophyly of the section Semeio-
cardium (Fig. S5–7). This might suggest that ycf1 has the 
greatest potential as DNA barcode marker for the genus 
Impatiens.

Phylogenetic relationships among sections 
of Impatiens

Impatiens was widely known as a taxonomically controver-
sial genus morphologically especially owing to its fragile 
and complex floral structures (Chen 1978; Li et al. 2018; 
Luo et al. 2021). In most angiosperms, including Impatiens, 
the plastome is uniparentally inherited, and despite its lack 
of recombination and generally low mutation rate possesses 

Fig. 4   Comparison of codon usage bias among the 80 protein-cod-
ing genes of 27 plastomes of Impatiens. The 27 histograms for each 
amino acid from left to right are: I. alpicola, I. arguta, I. balsamina, 
I. cyanantha, I. chlorosepala 1, I. chlorosepala 2, I. conchibracteata, 
I. davidii, I. fanjingshanica, I. glandulifera, I. guizhouensis, I. hawk-

eri, I. huangyanensis, I. linearisepala, I. loulanensis, I. macrovexilla 
var. yaoshanensis, I. macrovexilla, I. mengtszeana, I. monticola, I. 
morsei 1, I. morsei 2, I. piufanensis, I. pritzelii, I. sp., I. stenosepala, 
I. uliginos and I. walleriana. The height of histograms represents the 
value of relative synonymous codon usage (RSCU)

Fig. 5   Sliding window analysis of nucleotide diversity (Pi) based on the 27 complete plastomes of Impatiens, the red line in the middle means 
the cutoff value
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highly variable gene (especially intergenic spacer) regions, 
with the potential to resolve phylogenetic relationships of 
families and even genera (Bock 2007; Shaw et al. 2014; 
Schneider et al. 2021; Liu et al. 2022a, b). However, previ-
ous molecular phylogenetic studies in Impatiens either used 
short DNA sequences or suffered from limited taxon sam-
pling, resulting in restricted and/or conflicting conclusions 
(Fujihashi et al. 2002; Yuan et al. 2004; Janssens et al. 2006; 
Yu et al. 2016; Luo et al. 2021).

Therefore, we here performed phylogenomic (ML and 
BI) analyses of Impatiens based on 80 plastome-derived 
PCGs of 25 species (27 accessions), and with Hydrocera 
triflora and Marcgravia coriacea serving as outgroups 
(Fig. 6). This phylogeny recovered Impatiens as strongly 
supported sister clade (BS = 100, PP = 1.0) of the monotypic 
genus Hydrocera, in line with previous studies (Yu et al. 
2016; Rahelivololona et al. 2018; Luo et al. 2021). Moreo-
ver, within the genus, we recovered the major split between 
subgenera Clavicarpa and Impatiens, and all six (out of 
seven) sections sampled for the latter subgenus (except 
that sect. Tuberosae was not sampled) were highly supported 
as monophyletic and well resolved. Considering sectional 
relationships, sects. Semeiocardium + Racemosae proved 
sister to a grade comprising sects. Impatiens, Fasciculatae 
and the sister group Scorpioidae + Uniflorae. We note that 
the sectional relationships of our tree topology (Fig. 6) are 
also broadly reflected in the comparative plastome analyses 

of Ericales by Luo et al. (2021), even though this study 
included only 11 species of Impatiens and only 4 sections 
of subgenus Impatiens. Overall, these relationships largely 
concur with the intrageneric classification of Impatiens by 
Yu et al. (2016), based on combined morphological and 
DNA sequence data (ITS; atpB–rbcL, trnL–F), except for 
a reversing position of sects. Fasciculatae and Impatiens 
(see Fig. 6), although the support for this node is not strong 
enough (BS = 72, PP = 0.99). Future studies involving target 
enrichment or RNA-seq might be able to fully resolve the 
backbone phylogeny of Impatiens.

Conclusions

In this study, we investigated 27 complete plastomes of 
Impatiens species and reached important conclusions, 
which could provide insights into the plastome structure 
and phylogeny of this genus. The plastomes exhibited the 
typical quadripartite structure and showed highly similar 
sizes, GC contents, gene orders and functions. However, 
Impatiens morsei exhibited a smaller plastome, largely due 
to the loss of several genes (mostly in the SSC region) 
encoding NADH dehydrogenase subunits. Three highly 
variable regions were identified that can be further used 
as DNA barcode markers. In addition, our phylogenomic 
analysis of 80 plastome-derived protein-coding genes 

Fig. 6   Bayesian Inference (BI) tree of Impatiens (plus 2 outgroup 
species) based on 80 plastome-derived protein-coding genes (PCGs). 
Note that the Maximum Likelihood (ML) tree had the same topol-
ogy. Bootstrap support and posterior probability values are shown 

above branches (BS/PP). Branches without values are supported by 
BS = 100 and PP = 1.0. Asterisks for Impatiens newly assembled in 
this study
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(PCGs) better resolved major subgeneric and sectional 
relationships within Impatiens than previous studies using 
either ‘traditional’ DNA sequence information or com-
parative plastome data. Overall, the results reported in this 
study should facilitate future identification, taxonomic and 
DNA barcoding studies in Impatiens as well as evolution-
ary studies in Balsaminaceae.
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